|
A debris disk is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris disks have been found around both mature and young stars, as well as at least one debris disk in orbit around an evolved neutron star. Younger debris disks can constitute a phase in the formation of a planetary system following the protoplanetary disk phase, when terrestrial planets may finish growing. They can also be produced and maintained as the remnants of collisions between planetesimals, otherwise known as asteroids and comets. By 2001, over 900 candidate stars had been found to possess a debris disk. They are usually discovered by examining the star system in infrared light and looking for an excess of radiation beyond that emitted by the star. This excess is inferred to be radiation from the star that has been absorbed by the dust in the disk, then re-radiated away as infrared energy.〔(【引用サイトリンク】 Debris Disk Database )〕 Debris disks are often described as massive analogs to the debris in the Solar System. Most known debris disks have radii of 10–100 astronomical units (AU); they resemble the Kuiper belt in the Solar System, but with much more dust. They also resemble an eye. Some debris disks contain a component of warmer dust located within 10 AU from the central star. This dust is sometimes called exozodiacal dust by analogy to zodiacal dust in the Solar System. ==Observation history== In 1984 a debris disk was detected around the star Vega using the IRAS satellite. Initially this was believed to be a protoplanetary disk, but it is now thought to be a debris disk due to the lack of gas in the disk and the age of the star. Subsequently irregularities have been found in the disk, which may be indicative of the presence of planetary bodies. Similar discoveries of debris disks were made around the stars Fomalhaut and Beta Pictoris. The nearby star 55 Cancri, a system that is also known to contain five planets, was reported to also have a debris disk, but that detection could not be confirmed. Structures in the debris disk around Epsilon Eridani suggest perturbations by a planetary body in orbit around that star, which may be used to constrain the mass and orbit of the planet. On 24 April 2014, NASA reported detecting debris disks in archival images of several young stars, HD 141943 and HD 191089, first viewed between 1999 and 2006 with the Hubble Space Telescope, by using newly improved imaging processes. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Debris disk」の詳細全文を読む スポンサード リンク
|